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Abstract. In this article, we study the magnetic moment of the pentaquark state Θ+(1540) as a diquark–
diquark–antiquark ([ud][ud]s̄) state with the QCD sum rules in an external weak electromagnetic field
(EFSR) and the light-cone QCD sum rules (LCSR) respectively. The numerical results indicate that the
magnetic moment is about µΘ+ = −(0.11±0.02)µN for the EFSR and µΘ+ ≈ −(0.1–0.5)µN for the LCSR.
As the values obtained from the EFSR are more stable than the corresponding ones from the LCSR,
µΘ+ = −(0.11 ± 0.02)µN is more reliable.
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1 Introduction

The observation of the new baryon state Θ+(1540) with
positive strangeness and minimal quark content, ududs̄ [1],
has motivated intense theoretical investigations to clarify
the quantum numbers and to understand the substructures
of the exotic state [2, 3]. Although the pentaquark state
Θ+(1540) can be assigned to the top of the antidecuplet
10 with isospin I = 0, the spin and parity have not been
experimentally determined yet and no consensus has ever
been reached on the theoretical side [2,3]. The discovery has
opened a new field of the strong interactions and provides
a new opportunity for a deeper understanding of low en-
ergy QCD, especially when multiquark states are involved.
The magnetic moments of the pentaquark states are fun-
damental parameters, as their masses, which have copious
information about the underlying quark structures, can be
used to distinguish the preferred configurations from var-
ious theoretical models and deepen our understanding of
the underlying dynamics. Furthermore, the magnetic mo-
ment of the pentaquark state Θ+(1540) is an important
ingredient in studying the cross sections of the photo- or
electro-production, which can be used to determine the
fundamental quantum numbers of the pentaquark state
Θ+(1540), such as spin and parity [4, 8], and may be ex-
tracted from experiments eventually in the future.

There have been several works on the magnetic mo-
ments of the pentaquark state Θ+(1540) [5–15]; in this ar-
ticle, we take the point of view that the baryon Θ+(1540)
is a diquark–diquark–antiquark ([ud][ud]s̄) state with the
quantum numbers J = 1

2 , I = 0 , S = +1, and study its
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magnetic moment with the QCD sum rules in the external
weak electromagnetic field (EFSR) and the light-coneQCD
sum rules (LCSR) respectively [16–18]. Different quark con-
figurations can be implemented with different interpolating
currents, and if the u and d quarks in the pentaquark state
Θ+(1540) are bound into spin zero, color and flavor an-
titriplet 3̄ diquarks, we can take the diquarks (for example,
εabcubCγ5dc with JP = 0+ and εabcubCdc with JP = 0−)
instead of the u and d quarks as the basic constituents to
construct the interpolating currents.

The article is arranged as follows: we derive the EFSR
and LCSR for the magnetic moment of the pentaquark
state Θ+(1540) in Sect. 2; in Sect. 3, numerical results and
discussions; Sect. 4 is reserved for our conclusion.

2 EFSR and LCSR

Although for medium and asymptotic momentum transfers
the operator product expansion approach can be applied
for the form factors and moments of the wave functions,
at low momentum transfer, the standard operator prod-
uct expansion approach cannot be consistently applied,
as pointed out in the early work on photon couplings at
low momentum for the nucleon magnetic moments [17].
In [17], the problem was solved by using a two-point cor-
relation function in an external electromagnetic field, with
vacuum susceptibilities introduced as parameters for the
non-perturbative propagation in the external field, i.e. the
QCD sum rules in the external field. As non-perturbative
vacuum properties, the susceptibilities can be introduced
for both small and large momentum transfers in the ex-
ternal fields. The alternative way is the light-cone QCD
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sum rules, which was firstly used to calculate the magnetic
moments of the nucleons in [19]. For more discussions of
the magnetic moments of the baryons in the framework of
the LCSR approach, one can consult [20].

In the following, we write down the two-point corre-
lation functions ΠEFη(p) and ΠLCη(p) for the EFSR and
LCSR respectively [21],

ΠEFη(p) = i
∫

d4xeip·x 〈0|T{η(x)η̄(0)}|0〉Fµν
,

= Π0(p) +Πµν(p)Fµν + . . . , (1)

ΠLCη(p, q) = i
∫

d4x eipx 〈γ(q)|T{η(x)η̄(0)}|0〉 , (2)

where

η1(x)

=
1√
2
εabc

{[
uT
a (x)Cγ5db(x)

] [
uT
c (x)Cγ5de(x)

]
Cs̄T
e (x)

−(u ↔ d)
}
, (3)

η2(x)

=
1√
2
εabc

{[
uT
a (x)Cdb(x)

] [
uT
c (x)Cde(x)

]
Cs̄T
e (x)

−(u ↔ d)
}
, (4)

η(x) = {tη1(x) + η2(x)} . (5)

Here the γ(q) represents the external electromagnetic field
Aµ(x) = εµe

iq·x, the εµ is the photon polarization vector
and the field strength Fµν(x) = i(ενqµ − εµqν)eiq·x. The
Π0(p) is the correlation function without the external field
Fµν andΠµν(p) is the linear response term. The a, b, c and
e are color indexes, the C = −CT is the charge conjugation
operator, and t is an arbitrary parameter. The constituents
εabcuT

b (x)Cγ5dc(x) represent the scalar diquarkswithJP =
0+ and εabcuT

b (x)Cdc(x) represent the pseudoscalar di-
quarks with JP = 0−, we can denote the η1(x) and η2(x)
by S-type and P-type interpolating current respectively
according to the spin and parity of the constituent diquarks.
They both belong to the antitriplet 3̄ representation of
the color and flavor SU(3) group, and can cluster together
with diquark–diquark–antiquark structure to give the total
spin and parity for the pentaquark state Θ+(1540) JP =
1
2

+1. The scalar diquarks correspond to the 1S0 states
of the ud quark system. The one-gluon exchange force

1 We can write down the interpolating currents for the other
pentaquark states in the multiplets 10+ 8 based on the Jaffe–
Wilczek’s diquark model in the same way as we have done
in (3)–(5), then perform the operator product expansion and
use current–hadron duality to obtain the magnetic moments.
Comparing with the magnetic moments in the multiplets and
detailed studies may shed light on the substructures and low
energy dynamics of the pentaquark states. However, the cal-
culations of the operator product expansions for a number of
correlation functions are tedious and beyond the present work;
this may be our next work.

and the instanton induced force can lead to significant
attractions between the quarks in the 0+ channels [22].
The pseudoscalar diquarks do not have a non-relativistic
limit, and can be taken as the 3P0 states.

At the level of hadronic degrees of freedom, the linear
response term Πµν(p) can be written as

Πµν(p)Fµν (6)

= i
∫

d4xeip·x
〈
0|η(x)

×
{

−i
∫

d4yAµ(y)Jµ(y)
}
η̄(0)|0

〉
.

According to the basic assumption of current–hadron du-
ality in the QCD sum rules approach [16], we insert a com-
plete series of intermediate states satisfying the unitarity
principle with the same quantum numbers as the current
operator η(x) into the correlation functions in (2) and (6)
to obtain the hadronic representation. After isolating the
double-pole terms of the lowest pentaquark states, we get
the following results:

Πµν(p)Fµν

= −
∫

d4x

∫
d4y

d4k

(2π)4
d4k′

(2π)4

×
∑
ss′

1
m2
Θ+ − k2 − iε

1
m2
Θ+ − k′2 − iε

×eip·xAµ(y) 〈0|η(x)|ks〉 〈ks|Jµ(y)|k′s′〉 〈k′s′|η̄(0)|0〉
+ . . .

= −Fµνf2
0
F1(0) + F2(0)
4(m2

Θ+ − p2)2
{p̂σµν + σµν p̂}+ . . . ; (7)

ΠLCη(p, q)

= −f2
0 ε
µ p̂+mΘ+

p2 − m2
Θ+

[
F1(q2)γµ +

iσµνqν

2mΘ+
F2(q2)

]

× p̂+ q̂ +mΘ+

(p+ q)2 − m2
Θ+

+ . . .

= − f2
0

[
F1(q2) + F2(q2)

]
(p2 − m2

Θ+)((p+ q)2 − m2
Θ+)

p̂ε̂(p̂+ q̂) + . . .

= ΠLC(p, q)iεµναβγ5γ
µενqαpβ + . . . (8)

Here we have used the fix-point gauge xµA
µ(x) = 0,

Aµ(y) = − 1
2Fµνy

ν , and the definition 〈0|η(0)|Θ+(p)〉 =
f0u(p). From the electromagnetic form factors F1(q2) and
F2(q2), we can obtain the magnetic moment of the penta-
quark state Θ+(1540),

µΘ+ = {F1(0) + F2(0)} eΘ+

2mΘ+
. (9)

The linear response termΠµν(p) in the weak external elec-
tromagnetic fieldFµν has three different Dirac tensor struc-
tures,

Πµν(p) = ΠEF(p) {σµν p̂+ p̂σµν} (10)
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+Π1(p)i {pµγν − pνγµ} p̂+Π2(p)σµν .

The first structure has an odd number of γ-matrices and
conserves chirality, the second and third ones have an even
number of γ-matrices and violate chirality. In the origi-
nal QCD sum rules analysis of the nucleon magnetic mo-
ments [17], the interval of dimensions (of the condensates)
for the odd structure is larger than the interval of dimen-
sions for the even structures, and one may expect a better
accuracy of the results obtained from the sum rules with
the odd structure. In this article, the spin of the penta-
quark state Θ+(1540) is supposed to be 1

2 , just like the
nucleon. As in our previous work [15], we can choose the
first Dirac tensor structure {σµν p̂+ p̂σµν} for our analysis.
The phenomenological spectral density of the EFSR in (7)
can written

ImΠEF(s)
π

=
1
4

{F1(0) + F2(0)}f2
0 δ

′(s − m2
Θ+)

+Csubtractδ(s − m2
Θ+) + . . . , (11)

where the first term corresponds to the magnetic moment
of the pentaquark state Θ+(1540), and is of a double-pole
nature. The second term comes from the electromagnetic
transitions between the pentaquark stateΘ+(1540) and the
excited states (or high resonances), and is of a single-pole
character. Here we introduce the quantity Csubtract to rep-
resent the electromagnetic transitions between the ground
pentaquark state and the high resonances; it may have a
complex dependence on the energy s and high resonance
masses. However, we have no knowledge about the high
resonances, and even the existence of the ground penta-
quark state Θ+(1540) is not firmly established, which is in
contrast to the conventional baryons. In those channels we
can use the experimental data as a guide in constructing
the phenomenological spectral densities [23]. In practical
manipulations, we can take the Csubtract as an unknown
constant, and, fitted to reproduce reliable values for the
form factors F1(0) + F2(0), we will revisit this subject in
(19). The contributions from the higher resonances and
continuum states are suppressed after a Borel transform
and not shown explicitly for simplicity. For the LCSR, we
write down only the double-pole term explicitly in (8),
which corresponds to the magnetic moment of the penta-
quark state Θ+(1540), and choose the tensor structure
εµναβγ5γ

µενqαpβ for the analysis [5]. The contributions
from the single-pole terms which concern the excited and
continuum states are suppressed after the double Borel
transform, and are not shown explicitly for simplicity.

The calculation of the operator product expansion in
the deep Euclidean space-time region at the level of quark
and gluon degrees of freedom is straightforward and te-
dious; here technical details are neglected for simplicity,
and once the analytical results are obtained, we can ex-
press the correlation functions at the level of quark–gluon
degrees of freedom into the following forms through the
dispersion relation

ΠEF(P 2) =
es
π

∫ s0

m2
s

ds
Im[A(s)]
s+ P 2 + esB(P 2) + . . . , (12)

ΠLC(p, q)

= es

∫ 1

0
du

{
1
π

∫ s0

m2
s

ds
Im[C(s)]

s − up2 − (1− u)(p+ q)2

+D(p, q)

}
+ . . . , (13)

where

Im[A(s)]
π

= − (5t2 + 2t+ 5)s4

2145!4!π8 +
(5t2 + 2t+ 5)s3msχ 〈s̄s〉

295!4!π6

+
(5 + 2t − 7t2)s 〈q̄q〉2

2932π4

− (5 + 2t − 7t2)ms 〈q̄q〉2 〈s̄s〉χ
2732π2

− (5t2 + 2t+ 5)s2

2174!π6

〈
αsGG

π

〉
,

B(P 2) =
(5t2 + 2t+ 5) 〈q̄q〉4

2533P 4 ,

Im[C(s)]
π

=
(5t2 + 2t+ 5)s4

2125!4!π8 − (5t2 + 2t+ 5)s3fψ(u)
2135!π6

+
(7t2 − 2t − 5)s 〈q̄q〉2

2732π4

− (7t2 − 2t − 5) 〈q̄q〉2 fψ(u)
263π2

+
(5t2 + 2t+ 5)s2

2154!π6

〈
αsGG

π

〉

− (5t2 + 2t+ 5)sfψ(u)
2143π4

〈
αsGG

π

〉
,

D(p, q) = − (5t2 + 2t+ 5) 〈q̄q〉4
2333 (−up2 − (1− u)(p+ q)2)2

.

From (12) and (13), we can see that due to the special in-
terpolating current η(x) (see (3)–(5)), the u and d quarks
which constitute the diquarks have no contributions to
the magnetic moment though they have electromagnetic
interactions with the external field, and the net contribu-
tions to the magnetic moment come from the s quark only,
which is significantly different from the results obtained
in [5, 15], where all the u, d and s quarks have contribu-
tions. In [5, 15], the diquark–triquark type interpolating
current J(x) is used,

J(x) =
1√
2
εabc

{
uT
a (x)Cγ5db(x)

}
(14)

× {ue(x)s̄e(x)iγ5dc(x)− de(x)s̄e(x)iγ5uc(x)} .
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Although the diquark–diquark–antiquark type and
diquark–triquark type configurations implemented by the
interpolating currents η(x) and J(x) respectively can give
satisfactorymasses for the pentaquark stateΘ+(1540), and
the resulting magnetic moments are substantially differ-
ent. Once the magnetic moment can be extracted from the
electro- or photo-production experiments, we can select the
preferred configuration. In this article, we have neglected
the contributions from the direct instantons as the effects
are supposed to be small. In [24], the authors calculate
the leading direct instanton contributions to the operator
product expansion of the nucleon correlation function with
the Ioffe current

Jp(x) = εabc[uT
a (x)Cγαub(x)]γ5γ

αdc(x)

in an external electromagnetic field, and find that the in-
stanton contributions affect only the chiral odd sum rules
which had previously been considered unstable. The gen-
eral form of the proton current can be written [25]

Jp(x, t) = εabc
{[

uT
a (x)Cdb(x)

]
γ5uc(x)

+ t
[
uT
a (x)Cγ5db(x)

]
uc(x)

}
, (15)

in the limit t = −1, we recover the Ioffe current. In this
article, we take the value of t to be t = −1 in (5). The
pentaquark currents in (3)–(5) have a Dirac structure anal-
ogous to the baryon current in (15), so the contributions
from the direct instantons may not affect significantly our
analysis of the chiral even Dirac structure in (10). Further-
more, our previous work on the pentaquark mass using the
interpolating current

J(x) = εabcεdef εcfg{uT
a (x)Cdb(x)}

×{uT
d (x)Cγ5de(x)}Cs̄T

g (x)

indicates that the direct instantons have negligible contri-
butions [26]. The straightforward calculations and tedious
analysis of the direct instanton contributions to the mag-
netic moment of the pentaquark state Θ+(1540) will be
our next work.

Here we will take a short digression and present some
discussion of the condensates and light-cone amplitudes in
(12) and (13). The presence of the external electromagnetic
field Fµν induces three new vacuum condensates i.e. the
vacuum susceptibilities in the QCD vacuum [17]

〈qσµνq〉Fµν
= eqχFµν 〈qq〉 ,

gs 〈q̄Gµνq〉Fµν
= eqκFµν 〈qq〉 ,

gsε
µνλσ 〈qγ5Gλσq〉Fµν

= ieqξFµν 〈qq〉 ,

where eq is the quark charge, and χ, κ and ξ are the
quark vacuum susceptibilities. The values with different
theoretical approaches are different from each other; for
a short review, see [28]. Here we shall adopt the values
χ = −4.4GeV−2, κ = 0.4 and ξ = −0.8 [17,18,27]. In the
calculation, we have neglected the terms which concern
the gs 〈q̄Gµνq〉 and gsε

µνλσ 〈qγ5Gλσq|0〉 induced vacuum

susceptibilities as they are suppressed by large denomi-
nators. The photons can couple to the quark lines per-
turbatively and non-perturbatively, which results in two
classes of diagrams. In the first class of diagrams, the pho-
tons couple to the quark lines perturbatively through the
standard QED; the second class of diagrams involve the
non-perturbative interactions of photons with the quark
lines, which are parameterized by the photon light-cone
distribution amplitudes instead of the vacuum suscepti-
bilities. In this article, the following two-particle photon
light-cone distribution amplitude has contributions to the
magnetic moment [18,29],

〈γ(q)|q̄(x)γµγ5q(0)|0〉

=
f

4
eqεµνρσε

νqρxσ
∫ 1

0
dueiuqxψ(u) , (16)

where the ψ(u) is the twist-2 photon light-cone distribu-
tion amplitudes.

We make a Borel transform with respect to the variable
P 2 in (12) and a double Borel transform with respect to
the variables p2 and (p+ q)2 in (13),

Π(M2) ≡ lim
n,P 2→∞

1
Γ (n)

(P 2)n
(

− d
dP 2

)n
Π(P 2), (17)

BM2
1

(p+q)2B
M2

2
p2

Γ (n)
[m2 − (1− u)(p+ q)2 − up2]n

(18)

= (M2)2−ne− m2

M2 δ(u − u0),

withM2 = P 2/n in (17) andM2 = M2
1M

2
2

M2
1+M2

2
, u0 ≡ M2

1
M2

1+M2
2

in (18). Finally we obtain the sum rules,

{F1(0) + F2(0)} (1 + CM2)f2
0 e

− m2
Θ+

M2 = −4esAA, (19)

{F1(0) + F2(0)}f2
0 e

− m2
Θ+

M2 = −es BB, (20)

where

AA = − (5t2 + 2t+ 5)M12E4

2145!π8

+
(5t2 + 2t+ 5)msχ 〈s̄s〉M10E3

2115!π6

+
(5 + 2t − 7t2) 〈q̄q〉2 M6E1

2932π4

− (5 + 2t − 7t2)ms 〈q̄q〉2 〈s̄s〉χM4E0

2732π2

− (5t2 + 2t+ 5)M8E2

2164!π6

〈
αsGG

π

〉

+
(5t2 + 2t+ 5) 〈q̄q〉4

2533 ,

BB =
(5t2 + 2t+ 5)M12E4

2125!π8
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− (5t2 + 2t+ 5)M10E3fψ(u0)
2155π6

+
(7t2 − 2t − 5) 〈q̄q〉2 M6E1

2732π4

− (7t2 − 2t − 5) 〈q̄q〉2 fψ(u0)M4E0

263π2

+
(5t2 + 2t+ 5)M8E2

2144!π6

〈
αsGG

π

〉

− (5t2 + 2t+ 5)fψ(u0)M6E1

2143π4

〈
αsGG

π

〉

− (5t2 + 2t+ 5) 〈q̄q〉4
2333 ,

En = 1− exp
(
− s0

M2

) n∑
k=0

( s0

M2

)k 1
k!

.

The Borel transform in (17) cannot eliminate the con-
taminations to the correlation function from the single-
pole terms, and we introduce the parameter C which is
proportional to the Csubtract in (11) to subtract the con-
taminations. We have no knowledge of the electromagnetic
transitions between the pentaquark stateΘ+(1540) and the
excited states (or high resonances), and the C can be taken
as a free parameter. We choose the suitable values for C
to eliminate the contaminations from the single-pole terms
to obtain reliable sum rules. The contributions from the
single-pole terms may be as large as or larger than the
double-pole term, and in practical calculations, the C can
be fitted to give stable sum rules with respect to variations
of the Borel parameter M2 in a suitable interval. Taking
the C as an unknown constant has smeared the complex
energy s and high resonances masses dependence, which
will certainly impair the predictive power. As final numer-
ical results are insensitive to the threshold parameter s0
and there really exists a platform with the variations of the
Borel parameter M2, the predictions still make sense. The
double Borel transform in (18) can eliminate the single-
pole terms naturally; for more discussions of the double
Borel transform, one can consult [30]. Furthermore, from
the correlation function Π0(p) in (1), we can obtain the
sum rules for the coupling constant f0 [21],

f2
0 e

− m2
Θ+

M2 = CC, (21)

CC =
3(5t2 + 2t+ 5)M12E5

2117!π8

+
(5t2 + 2t+ 5)ms 〈s̄s〉M8E3

2105!π6

+
(1− t)2M8E3

2135!π6

〈
αsGG

π

〉

+
(7t2 − 2t − 5) 〈q̄q〉2 M6E2

2932π4

− (5t2 + 2t+ 5)ms 〈s̄gsσGs〉M6E2

21432π6

+
(7t2 − 2t − 5)ms 〈s̄s〉 〈q̄q〉2 M2E0

2632π2

+
(5t2 + 2t+ 5) 〈q̄q〉4

63 .

From the above equations, we can obtain the sum rules for
the form factor F1(0) + F2(0),

{F1(0) + F2(0)}
{
1 + CM2} = −4es AA

CC
, (22)

{F1(0) + F2(0)} = −es
BB

CC
. (23)

3 Numerical results and discussions

In this article, we take the value of the parameter t for
the interpolating current η(x) to be t = −1, which can
give a stable mass for the pentaquark state Θ+(1540)
(i.e. mΘ+ ≈ 1540MeV) with respect to the variations of
the Borel mass M2 in the considered interval M2 = (2–
3)GeV2 [21]. The parameters for the condensates are cho-
sen to be the standard values, although there are some sug-
gestions for updating those values; for reviews, see [31]. We
have 〈s̄s〉 = (0.8±0.1) 〈ūu〉, 〈q̄q〉 = 〈ūu〉 = 〈

d̄d
〉
= −(240±

10MeV)3, 〈s̄gsσGs〉 = m2
0 〈s̄s〉, m2

0 = (0.8 ± 0.1)GeV2,
χ = −(4.4 ± 0.4)GeV−2,

〈
αsGG

π

〉
= (0.33GeV)4, mu =

md = 0 andms = (140±10)MeV. Small variations of those
condensates will not lead to large changes of the numeri-
cal values. The threshold parameter s0 is chosen to vary
between (3.6–4.4)GeV2 to avoid possible contaminations
from the high resonances and continuum states, which is
shown in Fig. 1 for 〈s̄s〉 = 0.8 〈ūu〉, 〈q̄q〉 = −(240MeV)3,
m2

0 = 0.8GeV2, χ = −4.4GeV−2 and ms = 140MeV. In
the EFSR, for s0 = 4.0GeV2 and M2 = (2–5)GeV2, we
obtain the values

F1(0) + F2(0) = −(0.18± 0.03) ,

µΘ+ = −(0.18± 0.03)
eΘ+

2mΘ+
,

= −(0.11± 0.02)µN , (24)

where µN is the nucleon magneton. From Table 1, we can

Fig. 1. |F1(0)+F2(0)|with the variations of theBorel Parameter
M2 for EFSR
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Table 1. The values of µΘ+ (in units of µN )

Reference µΘ+

(µN )

[5] 0.12 ± 0.06

[6] 0.08 ∼ 0.6

[7] 0.2 ∼ 0.3

[8] 0.2 ∼ 0.5

[9] 0.08 or 0.23 or 0.19 or 0.37

[10] 0.4

[11] 0.38

[12] −1.19 or −0.33

[13] 0.71 or 0.56

[14] 0.362

[15] 0.24 ± 0.02

This work −(0.11 ± 0.02)

see that although the numerical values for the magnetic
moment of the pentaquark state Θ+(1540) vary with the
theoretical approaches, they are small in general; our nu-
merical results are consistent with most of the existing
values of the theoretical estimates in magnitude, however,
with negative sign. In (22), the perturbative contributions
are about 25%, the dominating contributions come from
the dimension-6 quark condensates terms 〈q̄q〉2, the con-
tributions from the gluon condensate

〈
αs
π GG

〉
, and the

dimension-12 quark condensates, 〈q̄q〉4, are very small and
can be safely neglected. In the calculation, other vacuum
condensates are neglected due to the suppression of the
large denominators, and the truncation of the operator
product expansion makes sense.

For the conventional ground state mesons and baryons,
due to the resonance dominating over the QCD continuum
contributions, the good convergence of the operator prod-
uct expansion, and the useful experimental guidance on the
threshold parameter s0, we can obtain the fiducial Borel
mass region. However, in the QCD sum rules for the penta-
quark states, the spectral density ρ(s) ∼ sm with m larger
than the corresponding ones in the sum rules for the con-
ventional baryons, a largermmeans a stronger dependence
on the continuum or the threshold parameter s0 [32, 33].
In (21), due to the huge continuum contributions, the pre-
dicted mass increases with the continuum threshold s0,
the QCD sum rules cannot strictly indicate the existence
of the resonance in the spectral function, and the threshold
parameter s0 has to be fixed ad hoc or intuitively. In the
finite energy sum rules (FESR) approach, the exponential
weight function exp

(− s
M2

)
is replaced by sn in the numer-

ical analysis. The FESR correlate the ground state mass
and the QCD continuum threshold s0, and separate the
ground state and QCD continuum contributions from the
very beginning, and for some pentaquark currents, there
happen to exist reasonable stability regions s0 [32]. The
weight function sn enhances the continuum or the high
mass resonances rather than the lowest ground state; we
must make sure that only the lowest pole terms contribute

Fig. 2. | [
AA
CC ]s0=20.0 GeV2−[AA

CC ]s0=4.0 GeV2

[AA
CC ]s0=4.0 GeV2

| with the variations

of the Borel parameter M2 for EFSR

to the FESR below the s0 – in some case, a naive sta-
bility region s0 cannot guarantee a physically reasonable
value for the s0 [33]. It is obvious that, as QCDmodels, the
Laplace sum rules and the FESR have both advantages and

shortcomings. Although the quantities f2
0 exp

(
−m2

Θ+

M2

)
in

(19) and (21) have a strong dependence on the continuum
threshold parameter s0, the dependence is eliminated in
(22) which results in a net s0 insensitivity; it is far from the

ideal case, where the f2
0 exp

(
−m2

Θ+

M2

)
are insensitive to the

threshold parameter s0. From Fig. 2, we can see that for the
Borel parameter M2 = (2–5)GeV2, the contributions of
the double-pole and single-pole terms below the threshold
s0 = 4.0GeV2 are dominating; for example, the contribu-
tions of the continuum from the s0 = 4.0GeV2 to a large
interval with s0 = 20.0GeV2 will not exceed 30% (com-
paring with the contributions below s0 = 4.0GeV2), the
lowest pole terms dominance still hold andwe have the fidu-
cial Borel mass domain where the neglect of higher-order
terms in the short-distance expansion is justified while the
nucleon pole terms still dominate over the continuum.

In the EFSR, the Borel transform cannot eliminate
the contributions from the single-pole terms; on the other
hand, we have no knowledge about the transitions between
the ground states, the Θ+(1540) state and excited states
(or high resonances); in practical manipulations, we can
introduce some free parameters which denote the contri-
butions from the single-pole terms and subtract them. In
choosing the parameter C in (22), we must take care; in
general, the C can be chosen to give stable sum rules with
respect to the variations of the Borel parameter M2. Al-
though the uncertainty of the condensates, the neglect of
the higher dimension condensates, the lack of perturbative
QCD corrections, etc., will result in errors, we have sta-
ble sum rules for the magnetic moment, and furthermore,
small variations of the condensates will not result in large
changes for the values: the predictions are qualitative at
least. If the pentaquark state Θ+(1540) can be interpo-
lated by the linear superposition of the S-type and P-type
diquark–diquark–antiquark current, η(x), the predictions
are quantitative and make sense. Comparing with [15], the
EFSR with different interpolating currents (standing for
different configurations) can lead to very different results
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Fig. 3. −[F1(0) + F2(0)] with the variations of the Borel pa-
rameter M2 for LCSR

for the magnetic moment, although they can both give
satisfactory masses for the pentaquark state Θ+(1540).

In the LCSR, the double Borel transform is supposed to
eliminate the single-pole terms which concern the contam-
inations from high resonances and continuum states, and
gives stable sum rules with the variations of the Borel pa-
rameter M2. However, that is not the case; from Fig. 3, we
can see that the LCSRs for the form factor−[F1(0)+F2(0)]
are sensitive to the threshold parameter s0, when s0 >
4.0GeV2, the values of the form factor −[F1(0) + F2(0)]
decrease drastically with the increase of the Borel pa-
rameter M2 and there will not appear a platform. For
s0 = 3.8GeV2, M2 = (2–5)GeV2, ψ(u) = 1 and f =
0.028GeV2 [18, 29], we have

F1(0) + F2(0) = −(0.2–0.8) ,
µΘ+ = −(0.2–0.8) eΘ+

2mΘ+
,

≈ −(0.1–0.5)µN . (25)

In the above equations, we take the maximal variation
interval for the values of the form factor F1(0) + F2(0).

In the LCSR approach, the uncertainty of the pho-
ton light-cone distribution amplitudes, keeping only the
lowest-twist few terms of the two particles distribution am-
plitudes, the uncertainty of the condensates, the neglect of
the higher dimension condensates, the lack of perturbative
QCD corrections, etc., can lead to errors in the predictions.
The LCSRs for the form factor F1(0)+F2(0) (see (23) and
(25)) are very sensitive to the values of the parameter f , and
small variations of the f can lead to large changes for the
magnetic moment, which is shown in Fig. 4. The inclusion
of the contributions from the direct instantonsmay improve
the stability of the LCSR; to our knowledge, there exist no
such type of works on the magnetic moments of the baryon
with the LCSR; this may be our next work. In this article,
only the non-perturbative interactions of the photons with
the s quark line of the form 〈γ(q)|q̄(x)γµγ5q(0)|0〉 have con-
tributions to the magnetic moment, which is significantly
different from the corresponding ones with the interpolat-
ing current J(x) in (14), where all the non-local matrix
elements 〈γ(q)|q̄(x)σµνq(0)|0〉, 〈γ(q)|q̄(x)γµγ5q(0)|0〉, and
〈γ(q)|q̄(x)γµq(0)|0〉 have contributions to themagneticmo-
ment, and result in more stable sum rules [5]. In the vector

Fig. 4. |F1(0) + F2(0)| for different f with the variations of
the Borel parameter M2 for LCSR (s0 = 3.8GeV2)

dominance model,

f � fρmρ
gρ

� 0.028GeV2, (26)

with gρ = 5.5 and fρ = 0.2GeV. To the leading-twist
accuracy, the light-cone amplitudeψ(u) is a constant which
is set to unity due to the normalization condition.

We choose different tensor structures for the analysis
in different approaches, i.e. the EFSR and the LCSR with
the same interpolating current η(x); the resulting different
sum rules always lead to different predictions [5, 15]. The
LCSRs with the interpolating current η(x) depend heavily
on the values of the parameter f and are sensitive to the
threshold parameter s0 – the values obtained from the
LCSR (see (25)) are not as reliable as the corresponding
ones from the EFSR (see (24)). When the experimental
measurement of the magnetic moment of the pentaquark
state Θ+(1540) is possible in the future, we might be able
to test the theoretical predictions, and select the preferred
quark configurations.

4 Conclusion

In summary, we have calculated the magnetic moment of
the pentaquark stateΘ+(1540) as a diquark–diquark–anti-
quark ([ud][ud]s̄) state with both the EFSR and LCSR.
We choose different tensor structures for our analysis in
different approaches (i.e. the EFSR and the LCSR) with
the same interpolating current, and the resulting different
sum rules always lead to different predictions [5, 15]. The
EFSRs for the magnetic moment are stable with the vari-
ations of the Borel parameter M2 and insensitive to the
threshold parameter s0 (see Figs. 1 and 2); the LCSRs in
this work heavily depend on the values of the non-local
matrix element 〈γ(q)|q̄(x)γµγ5q(0)|0〉; small variations of
the values of f can result in large changes of the magnetic
moments. The values from the EFSR are more reliable
than the corresponding ones from the LCSR. The numeri-
cal results from the EFSR are consistent with most of the
existing values of the theoretical estimations in magnitude,
however, with negative sign, µΘ+ = −(0.18±0.03) eΘ+

2mΘ+
=

−(0.11±0.02)µN . Comparing with [15], the EFSRwith dif-
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ferent interpolating currents (standing for different config-
urations) can lead to very different results for the magnetic
moment, although they can both give satisfactory masses
for the pentaquark stateΘ+(1540). If the pentaquark state
Θ+(1540) can be interpolated by a linear superposition of
both S-type and P-type diquark–diquark–antiquark cur-
rent η(x), the predictions are quantitative and make sense.
The magnetic moments of the baryons are fundamental
parameters as their masses, which have copious informa-
tion about the underlying quark structures, and different
substructures can lead to very different results. The width
of the pentaquark state Θ+(1540) is so narrow, that when
the small magnetic moment can be extracted from electro-
or photo-production experiments eventually in the future,
this may be used to distinguish the preferred configurations
from various theoretical models, and we may obtain more
insight into the relevant degrees of freedom and deepen our
understanding of the underlying dynamics that determines
the properties of the exotic pentaquark states.
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